MCA Part 66 - Module 17 - Hélice


Tirage au sort de 20 parmi une base de 101 Questions...


1) L’effet de traction asymétrique sur une hélice apparaît :
  si l’hélice n’est pas équilibrée ;
  uniquement dans le cas d’une hélice tournant dans le sens horaire, vu de la place pilote ;
  seulement si le mécanisme de changement de pas, d’une hélice régulée à vitesse de rotation constante, est cassé.
  si l’avion vole sous une incidence importante ;
  Je ne sais pas

2) Dans les propositions suivantes, laquelle est identifiée comme étant la face courbée d’une pale d’hélice qui correspond à la surface supérieure d’un profil de voilure ?
  La contre face de la pale (blade back) ;
  Le bord d’attaque de la pale (blade leading edge) ;
  La corde de la pale (blade cor;
  La face de la pale (blade face).
  Je ne sais pas

3) L’angle de calage d’une pale d’hélice est défini comme étant l’angle compris entre la corde de référence du profil (pris au niveau de la section de référence de la pale) et :
  le plan de rotation ;
  le vent relatif ;
  l’axe de rotation des pales au cours d’un changement de calage.
  l’axe de traction de l’hélice ;
  Je ne sais pas

4) Avec une hélice en moulinet, après une panne moteur :
  les couples de torsion centrifuge et aérodynamique diminueront immédiatement vers zéro.
  le couple de torsion centrifuge augmentera rapidement.
  les couples de torsion centrifuge et aérodynamique agiront dans la même direction.
  le couple de torsion aérodynamique augmentera rapidement.
  Je ne sais pas

5) Quand la vitesse propre de l’avion augmente, avec le régime de rotation moteur constant, l’angle d’incidence de l’hélice à calage variable :
  augmente puis diminue.
  reste constant ;
  diminue ;
  augmente ;
  Je ne sais pas

6) La protection contre le givrage des hélices, sur les avions turbopropulsés modernes, fonctionne :
  avec de l’air chaud ;
  pneumatiquement ;
  avec un fluide antigel ;
  électriquement.
  Je ne sais pas

7) L’angle d’incidence, pour une pale d’hélice en rotation, est mesuré entre la corde de référence du profil et :
  l’angle de calage, lequel nécessite la production d’une même traction.
  l’angle de plein petit pas ;
  le vent relatif ;
  le plan de rotation décrit par la pale ;
  Je ne sais pas

8) Pourquoi l’angle de calage des pales d’une hélice change-t-il du pied jusqu’au sommet de celles-ci ?
  parce que l’épaisseur des sections de pale augmente du pied jusqu’au sommet ;
  pour fournir une traction augmentée au pied des pales ;
  pour compenser l’augmentation de la vitesse périphérique au sommet des pales.
  pour compenser le changement de géométrie des sections droites des pales ;
  Je ne sais pas

9) Lorsqu’en vol, un moteur à pistons est stoppé et que l’angle de calage de l’hélice est voisin de 90°, l’hélice est dite :
  en moulinet ;
  transparente ;
  en drapeau.
  à traînée minimum ;
  Je ne sais pas

10) L’effet de souffle hélicoïdal dû à une hélice est plus important pour :
  des vitesses avions faibles et une puissance affichée faible.
  des vitesses avions élevées et une puissance affichée faible ;
  des vitesses avions élevées et une puissance affichée élevée ;
  des vitesses avions faibles et une puissance affichée élevée ;
  Je ne sais pas

11) Normalement, un pilote utilise le circuit de mise en drapeau automatique d’une hélice pendant :
  le décollage ;
  le décollage et l’atterrissage.
  l’atterrissage ;
  la croisière ;
  Je ne sais pas

12) Augmenter le nombre de pales d’une hélice :
  augmentera la puissance maximale que peut absorber l’hélice.
  augmentera le rendement de l’hélice.
  réduira, à la puissance maximum, le couple sur l’arbre hélice.
  augmentera le niveau de bruit généré à la puissance maximale.
  Je ne sais pas

13) Une hélice régulée à vitesse de rotation constante a :
  seulement pour le point de fonctionnement optimal, un meilleur rendement qu’une hélice à calage fixe ;
  en général, un plus mauvais rendement qu’une hélice à calage fixe ;
  son rendement maximum pendant la montée.
  seulement au-dessus et en dessous du point optimal de fonctionnement, un meilleur rendement qu’une hélice à calage fixe, dans les mêmes conditions de vitesse ;
  Je ne sais pas

14) La distance que parcourt réellement l’hélice, lorsqu’elle fait un tour complet correspond au ?
  pas théorique
  pas géométrique
  pas effectif
  Je ne sais pas

15) Pourquoi les pales d’une hélice sont elles vrillées ?
  pour éviter le décollement des filets d’air ;
  pour obtenir un angle d’incidence constant le long de la pale.
  pour obtenir une vitesse périphérique constante le long de la pale ;
  pour obtenir un pas géométrique constant le long de la pale ;
  Je ne sais pas

16) Une panne moteur peut conduire soit à une hélice en moulinet (1), soit à une hélice arrêtée en drapeau (2). Quelle proposition, concernant la traînée hélice, est correcte ?
  Impossible de dire laquelle traîne le plus.
  (1) traîne plus que (2) ;
  La traînée est la même pour les deux hélices ;
  (2) traîne plus que (1) ;
  Je ne sais pas

17) Durant le décollage, l’angle d’incidence des pales d’une hélice à calage fixe, optimisée pour la croisière, est :
  nul.
  relativement élevé.
  négatif.
  relativement petit.
  Je ne sais pas

18) L'hélice à vitesse constante
  Diminue la vitesse de décrochage moteur réduit
  Est pourvue d’un pas constant
  Permet de raccourcir la distance de décollage
  S'utilise avec grand pas au décollage et petit pas en croisière
  Je ne sais pas

19) Pourquoi une pale d’hélice est-elle vrillée du pied à l’extrémité ?
  pour que le pied produise la traction maximale ;
  pour que l’extrémité produise la traction maximale ;
  parce que l’angle d’incidence local d’un élément de pale dépend du rapport entre la vitesse de cet élément dans le plan de rotation et la vitesse vraie de l’aéronef ;
  parce que l’angle d’incidence local d’un élément de pale dépend du rapport entre la vitesse de cet élément dans le plan de rotation et la vitesse angulaire de l’hélice.
  Je ne sais pas

20) Le couple, développé par un moteur d’avion, peut être mesuré :
  sur les pales de l’hélice ;
  dans le réducteur situé entre le moteur et l’hélice.
  sur l’arbre à cames ;
  dans le boîtier accessoires ;
  Je ne sais pas

Partagez ce quiz :